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Factoring Symmetric Indefinite Matrices

on High-Performance Architectures

Mark T. Jones*and Merrell L. Patrick *t

Abstract

The Bunch-Kaufman algorithm is the method of choice for factor-

ing symmetric indefinite matrices in many applications. However, the

Bunch-Kaufman algorithm does not take advantage of high-performance

architectures such as the Cray Y-MP. Three new algorithms, based

on Bunch-Kaufman factorization, that take advantage of such archi-

tectures are described. Results from an implementation of the third

algorithm are presented.
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1 Introduction

The Bunch-Kaufman algorithm is considered one of the best methods for

factoring full, symmetric, indefinite matrices [1], [2]. A modified version has

been successfully used to factor sparse, indefinite matrices [3]. Recently,

Bunch-Kaufman factorization has been shown to be the method of choice for

a subset of banded, symmetric indefinite matrices [4].

The Bunch-Kaufman algorithm maintains the symmetry of the matrix

during factorization and yields the inertia of the matrix essentially for free,

an important consideration for eigenvalue calculations [1]. A drawback to the

Bunch-Kaufman algorithm is its unsuitability for high-performance architec-

tures. Herein, three new algorithms, based on Bunch-Kaufman factorization,

are given for architectures such as the Cray Y-MP.

The technique of loop unrolling for vector architectures is discussed in

section 2. In section 3, one of several variations of the Bunch-Kaufman al-

gorithm is reviewed and the reason for its unsuitability for high-performance

architectures is given. Three new algorithms for high-performance architec-

tures are developed in section 4. Results showing the benefits of the third

algorithm are given in section 5. Finally, a summary and description of future

work is given in section 6.

2 Loop-Unrolling

Loop unrolling is a well known technique for improving performance on vector

architectures. A loop is unrolled by restructuring it to allow more compu-

tation to take place at each step. A simple example of loop unrolling from

[5] is given in Figure 1. The outer DO-loop has been unrolled to a depth of

four. In the original program segment, three vector memory references were

required for every two vector floating point operations. The ratio for the un-

rolled program segment is six vector memory references for every eight vector

floating point operations. A significant decrease in the number of memory
references has been achieved.

The reduction in the number of vector memory operations reduces the

probability of delays due to memory latency times as well as the possibility

of memory contention in a parallel computer [6].

Three other benefits of loop unrolling are described in [7]. The first is a



C Original program segment

DO 20J= 1, N2

DO 10 I = 1, N1

Y(I) = Y(I) + X(J) * M(I,J)
10 CONTINUE

20 CONTINUE

C In this example, the end condition if N2 isn't a multiple of four is ignored

DO 20 J -- 4, N2, 4

DO 10I= 1, N1

Y(I) = Y(I) + X(J-3) * M(I,J-3) q- X(J-2) * M(I,J-2) +

c X(J-1) * M(I,J-1) ÷ X(J) * M(I,J)
10 CONTINUE

20 CONTINUE

Figure 1: Simple loop unrolling example

reduction in loop overhead because fewer incrementing and testing operations

are required. This benefit can be reaped by any computer architecture.

For computers with segmented functional units, such as the CDC 7600,

the higher ratio of floating point operations to overhead operations will allow

a higher level of concurrency within a functional unit.

Computers with independent functional units, such as the Cray-1, benefit

from greater concurrency between the functional units.

The optimal depth of loop unrolling is largely dependent on the target

architecture. For example, if the independent functional units of a computer

are kept busy with loop unrolling of depth p, then increasing the depth to

p + 1 will not result in increased concurrency among functional units.

In the simple example in Figure 1, the results of iteration j of the outer

loop did not depend on results of previous iterations. Therefore, the outer

loop was easily unrolled. If LDL T decomposition is considered, however, each

iteration of the outer loop depends on the previous iterations (see Figure 2).

Unrolling the outer loop causes several pivot columns to be used simultane-

ously to update the remaining non-zeroes. For the algorithm to be correct,

the first pivot column must be used to update the other pivot columns, then

the second pivot column used to update the remaining pivot columns, and so

forth. After all the pivot columns are updated, they are used to update the

remaining non-zeroes. Conceptually, loop unrolling in LDL T allows the use



1)
C

2)
3)
4)
S)20
C

0)
7)
8)
9) 40

10) 30

11) 10

DO 10 I = i,N

Compute the pivotcolumn

DO 20J=I%I,N

V(J) = A(J,I)

A(J,I)= A(J,I)/A(I,I)

CONTINUE

Update the remaining non-zeroes

DO 30J= I+I,N

DO 40 K = J, N

A(J,K) = A(J,K) - V(K)*A(J,I)

CONTINUE

CONTINUE

CONTINUE

Figure 2: The LDL T algorithm

of matrix-matrix operations rather than matrix-vector operations. A version

of LDL T unrolled to a depth of three is given in Figure 3.

Because three pivot columns arc used to update the remaining non-zeroes

in step 20, each time an element, ai, k, is fetched six floating point computa-

tions are done, rather than just two as in step 8 of the original algorithm.

3 The Bunch-Kaufman Algorithm

The Bunch-Kaufman algorithm factors A, an n × n real symmetric indefinite

matrix, into LDL T while doing symmetric permutations on A to maintain

stability, resulting in the following equation:

pApT= LDL r. (1)

Although several variations of the algorithm exist, the focus here is on algo-

rithm D from [1] because it is the simplest to discuss. The methods described

in section 4 are also applicable to Algorithm A described in [1], but not to

Algorithm C (Algorithm B is mentioned in [1], but it is not described in

detail).

The Bunch-Kaufman algorithm maintains stability by using 2x2 pivots

combined with symmetric permutations to A when a lxl pivot is not stable.



C Loop unrolled version
C The end condition for handling N not divisible by 3 has been ignored

1)
C
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11)

12)

13)

14)

15)

16)
17) 20

C

18)

9)
20)

21) 40
22) 30
23) 10

C

DO 10I= 1, N, 3

Compute the upper 3x3 triangle of the pivot columns

VI(I+I) = A(I%l,I)

A(I+l,I) = A(I+IJ)/A(U)
V1(:+2) = A(I+2,I)
A(I÷2,1) = A(I+2,I)/A(I,I)

A(I+l,I+l)-- A(I+l,I+l) -VI(I+I)*A(I+I,I)

V2(I+2) = A(I+2,I+I) - VI(I+I)*A(I+2,I)

A(I+2,1+ I) = V2(I+2)/A(I+I,I+ 1)

A(I+2,I+2) = A(I+2,I+2)- Vl(I+2)*A(I+2,I) - V2(I+2)*A(I+2,I+l)

Update and compute all three pivot columns

DO 20J= I+3, N

Vl(J) = A(J,I)

A(J,I) = A(J,I)/A(I,I)

V2(J) = A(J,I+I) - VI(I+I)*A(J,I)

A(J,I+l) = V2(J)/A(I+I,I+I)

va(a) = A(a,I+2) - Vl(i+2)*A(a,I)- V2(I+2)*A(a,I+_)
A(J,I+2) = A(J,I+2)/A(I+2,1+2)

CONTINUE

Use the 3 pivotscolumns to update the remaining non-zeroes

DO 30J =I+3, N

DO 40 K = J,N

A(J,K) = A(J,K)- VI(K)*A(J,I) - V2(K)*A(J,I+I) -

Va(K)*A(J,I+2)

CONTINUE

CONTINUE

CONTINUE

Figure 3: LDL T unrolled to a depth of three
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Because this paper will concentrate on lxl pivots, only stability for these

pivots will be discussed in detail. A lxl pivot for element a O at step k takes
the form

aid = aid - al,ka£k/ak,k. (2)

Let #k be the maximum of the absolute values of the uneliminated elements

at step k. Step 2 of the algorithm (shown in Figure 4) finds the maximum

element, )_, in the pivot column. By substituting # and )_ into equation 2,

the bound on #k+l becomes

m<+,< + a,<.,<I< + ),/I a,<.kI). (a)

Step 4 ensures that a lxl pivot occurs if a <[ ai,i I/A, where the parameter

a has been chosen to be 0.525 to maximize stability for Algorithm D [1]. By

substituting a into equation 3,

_k+x </_k(1 + l/a). (4)

Therefore, the bound on the growth of an element due to a lxl pivot is 2.905.

If the test in step 4 is failed, a subsequent row search and another stability

test determines if a 2x2 pivot and a permutation are necessary.

The stability checks and possible permutations at each step of the Bunch-

Kaufman algorithm prevent the use of the same type of loop unrolling that

is used for LDL :r decomposition. Because the stability checks and permuta-

tions must be completed before a pivot column is computed, pivot columns

cannot be grouped as they were in Figure 2 without invalidating the bounds

on element growth.

4 New Algorithm

This section will develop three ways in which the Bunch-Kaufman algorithm

can be modified to allow pivot columns to be grouped together in one step.

Because each 2x2 pivot involves a permutation of A, it is not possible to group

2x2 pivots together. However, lxl pivots can be grouped with a 2x2 pivot if

they follow the 2x2 pivot, allowing the permutation to precede the updating

and computing of pivot columns. Each 2x2 pivot can be implemented using

loop unrolling of depth 2. The general strategy in this section will be to

try to group several lxl pivots into a single step in a stable fashion. The

5



1) fori: 1, n

begin

2) _ = maxj=i+l,n I aj, i[

3) set r to the row number of

4) if:_a < I ai,il then

begin

5) perform a lxl pivot
end

else

begin

6) a = maxi=i+l,,_ [ ar,i]

7) if 0r )t_ < a ] ai, i l then

begin

8) perform a lxl pivot
end

else

begin

9) exchange rows and columns r and i + 1

10) perform a 2x2 pivot

11) i = i + 1
end

end

12) end

13) if inertia is desired, then scan the D matrix

Figure 4: The Bunch-Kaufman Factorization Algorithm
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strategies describedin this section are applicable to Algorithms A and D,

but not C from [1]. Algorithm C cannot be unrolled using these strategies

because a permutation occurs at every step.

The first approach uses pxp pivots in much the same way as the 2x2 pivots

in the Bunch-Kaufman algorithm. The update of a single element of A using

a 2x2 pivot at step k is

(ai,kak+l,k+l -- ai,k+lai,+l,k)al, k + (ai,k+lak, k -- ai,_ak+l,k)aj,_+l
2

ai,j = ai,j -- ai,lai+l,i+l -- ai+l,i

(5)
To obtain a bound for element growth, first define at step k

= l I (6)

and,

_2 = maxl=k+2,, l al,k+l I"

If/zk, A1, and Ag-are substituted into equation 5, then

#k+9- -< #4(1 + i ai,iai+l,,+ 1 _ a2+1,, i).

(7)

(8)

The bound on growth of #k+_ for a 2x2 pivot in Algorithm D is 8.526 [1].

Therefore, a 2x2 pivot can be performed if

(Ai+ Ag-)21+ < 8.526. (9)
9.

[ ai,iai+l,i+l -- ai+,,i I

This derivation is similar to the 2x2 pivot stability analysis in [1]. This test

differs from the Bunch-Kaufman 2x2 test because it groups two potential

lxl pivots into one step. The Bunch-Kaufman 2x2 test is used when a lxl

pivot is not stable. The new test precedes step 4 of the Bunch-Kaufman

algorithm in Figure 4. This approach has two drawbacks: 1) the formulae

for bounding the growth due to a pxp pivot become increasingly complicated

as p increases, and 2) the inertia calculation is no longer just a search down

the diagonal, it requires the solution of many pxp eigenproblems.

The second approach updates the potential pivot columns one at a time

and, after each update, applies the lxl pivot stability check to determine if

7



4a) if_a < I ai,i Ithen

begin

4b) compute the ith pivot column and use it to update column i -_ 1

4c) )_2 = rnaxj=i+_,,_ l aj, i+l ]

4d) if_2 a > I ai+1,_+1 I then

begin

4e) compute the (i ÷ 1)th pivot column and use it and column i to
update column i + 2

4f) )_3 -- ma_i=i+3,n ] aj, i+21

4g) if)_3a >[ ai+_,_+2 I then

begin

4h) use columns i, i + 1, and i + 2 to update the remaining
non-zeroes

end

els e

begin

4i) use columns i and i + 1 to update the remaining non-zeroes
end

end

else

begin

4j) perform a lxl pivot
end

end

Figure 5: Approach Two for Loop Unrolling
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further unrolling is possible. This test replaces steps 4 and 5 of the Bunch-

Kaufman algorithm. An example of this test for up to three columns is given
in Figure 5.

The third strategy uses an a pr/or/approach to predict stability. The

strategy predicts the stability of grouping p lxl pivots without updating

each potential pivot column. Only the upper pxp triangle must be updated

to bound element growth. From equation 4, for p successive lxl pivots to

maintain stability, the maximum element growth must be bounded by

At step k, let

(1 + 1/a) p. (I0)

_2 : maxj--k+2,n I ai, k+l I" (11)

The bound on element growth for a lxl pivot is (1 + A/ak,k), therefore the
bound on A2 after a lxl pivot is

)_ < A2(1 + )_/ak,k). (12)

Because the upper pxp triangle has been updated, a bound on #k+_ for a

second lxl pivot using column k + 1 is

/_k+_ _< /_k+l(X + f2/ak+l,k+l). (13)

By substituting the bound for #k+l into equation 13

#k+2 < #k(1 + ;_/ak,_)(1 + _2/ak+l,k+l). (14)

In general, the bound on #k+p-1 for p lxl pivots is

_k+p-1 ___ _k+p-2(1 + _k+p-2/_k+p-1 ), (15)
ak+p-l,k+p-1

where

Ak+p-1 = maxi=k+p,,., I aj, k+p_l I. (16)

Given the bound for p - 1 lxl pivots, the only new information necessary

is the updated value of ak+n-l,k+p-i and Ak+p-i. If the bound for #k+0,-1)

is small enough then the p pivot columns are computed at the same time

and all used at the same time to update the remaining non-zeroes. The a



priori strategy has two advantages over the second strategy. First, it allows

all the pivot columns to be updated and computed in one loop. The second

strategy requires the pivot columns to be updated and computed one after

the other. Therefore, the a priori method reaps the benefits of loop unrolling

in the pivot column calculation. Second_ the a prior/method can combine a

pivot that fails the lxl pivot test with a lxl pivot that is very stable if the

combination of the two meets the stability criterion. The second method is

unable to combine the two pivots if one of the pivots fails the lxl stability

test. Another benefit the a prior/method reaps from this combination is

avoiding the search for a in step 6 of the Bunch-Kaufman algorithm. A

disadvantage of the a priori method when compared with the second method,

is the use of estimated bounds. In some cases these bounds are too pessimistic

and thereby prevent the combining of lxl pivots when the combination is

stable. Because the second method actually computes the pivot columns it

does not have to use estimated bounds.

5 Results

A version of the a priori algorithm described in section 4 suitable for variable

banded systems was implemented on a Cray Y-MP. The uniprocessor imple-

mentation allows loop unrolling up to depth six to take place. When the

maximum depth of loop unrolling is fixed at one, this algorithm is identical

to the Bunch-Kaufman algorithm. The Cray Y-MP is a register-to-register

parallel/vector computer with up to eight processors. Each processor has

independent, segmented functional units. An indefinite matrix that arose

from an application in structural engineering was factored and the resulting

triangular matrices were solved. The order of the matrix was 10,785 and the

average bandwidth was 416. A significant reduction in factorization time and

solution time for the resulting triangular systems, due to increasing depths

of loop unrolling is shown in Figure 6. For this matrix, the combination of

six pivot columns never met the stability criterion.

The benefits of the algorithm will vary depending on the architecture

and on the matrix being solved. For example, the same implementation was

executed on the Convex C-220, an architecture with independent, segmented

functional units. An indefinite matrix arising from the same application was

factored, but with an order of 6734 and an average bandwidth of 336. The

10



Depth Factorization Speedupover Triangular Solution Speedupover
Time (sec.) Bunch-Kaufman Time (sec.) Bunch-Kaufman

1 16.3 1.00 0.32 1.00
2 13.4 1.22 0.23 1.39
3 12.9 1.26 0.21 1.52
4 12.6 1.29 0.21 1.52
5 12.8 1.27 0.20 1.60

Figure 6: Effectsof different depths of loop unrolling on the Cray Y-MP

Depth Factorization Speedupover
Time (sec.) Bunch-Kaufman

1 71.77 1.00
2 50.99 1.41

46.85 1.53

Triangular Solution Speedup over

Time (sec.) Bunch-Kaufman

1.30 1.00

1.05 1.24

0.98 1.33

4 45.37 1.58 0.96 1.35

5 45.15 1.59 0.97 1.34

Figure 7: Effects of different depths of loop unrolling on the Convex C-220

maximum speedup due to the a priori algorithm is shown in Figure 7 to be

significantly better for this combination of architecture and matrix than for

the combination in Figure 6.

Observing the number of times each depth of loop unrolling is utilized

can be useful in determining the best maximum depth of loop unrolling for

a particular application. Shown in Figure 8 is the number of times that

each depth of loop unrolling was utilized when factoring the same matrix

used in the Convex C-220 test. These results will, of course, be different for

every matrix factored, but may be similar for matrices arising from the same

application.
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Maximum No. of No. of No. of No. of No. of No. of
PossibleDepth Depth 1 Depth 2 Depth 3 Depth 4 Depth 5 Depth 6

1 6732 1
2 658 3038
3 516 1195 1276
4 543 992 429 730

5 561 874 439 432 276

6 561 874 439 432 276 0

Figure 8: Depths of loop unrolled achieved

6 Summary and Future Work

Three algorithms, each based on the Bunch-Kaufman algorithm, suitable for

factoring symmetric indefinite matrices on high-performance architectures

were given. The third algorithm, called the a prior/strategy, was deter-

mined to be superior to the other two and was implemented on two high-

performance architectures, the Cray Y-MP and the Convex C-220. The a pr/-

or/algorithm was shown to be significantly faster than the Bunch-Kaufman

algorithm.

The a priori algorithm is also suitable for implementation on parallel

architectures because it allows the use of matrix-matrix operations, rather

than the matrix-vector operations used in the Bunch-Kaufman algorithm.

The use of the a priori algorithm will increase the ratio of computation to

synchronization. The authors are currently implementing this algorithm on

a parallel architecture.

Another possible application for the a priori strategy is the factorization

of sparse matrices. A variant of the Bunch-Kaufman algorithm that includes

pivoting to preserve sparsity is given in [3]. A modified version of the a priori

strategy may improve the performance of this algorithm on high-performance
architectures.
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